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Summary. The wave equation describing small radial perturbations of spheri-
cally symmetric, gaseous stars has been generalized to include, in a simple
way, the effects of axial rotation and of tangled magnetic fields. Solutions
in closed form have been obtained for the adiabatic pulsation periods of
five analytic stellar models in two special cases, which have, none the less,
considerable astrophysical interest. Non-adiabatic stability criteria have been
determined by means of the one-zone stellar model. Results are discussed
for a range of physical parameters of the models, and applications are made
to the case of classical Cepheids and other variable giant stars.

1 Introduction

The wave equation that describes small radial oscillations of self-gravitating gas spheres
admits solutions in closed form in the case of a few specialized stellar models. Although
these models are very simplified approximations to real astronomical bodies, the solutions
do provide a useful and illuminating means of interpreting the much more complex numerical
results obtained for more realistic cases, and have some mathematical interest in their own
right. The five models for which adiabatic pulsational periods have been derived completely
analytically can most conveniently be described in terms of their interior density distri-
butions: (1) the homogeneous model, with p =constant; (2) the inverse-square model,
with p =pgr (r/R)%; (3) the Roche model, containing a point mass surrounded by an envelope
of negligible mass in which p = pg(*/R)"?; (4) the Prasad model, consisting of a point mass
surrounded by an envelope which contains two-thirds of the total mass and has p = constant;
and (5) an atmospheric model, which is similar to the Roche model except that its density
distribution is determined from the requirement that the temperature lapse rate be equal to
a constant (variants of this model exist).

The first three solutions in their most general form were originally obtained by Sterne
(1937) (see also Ritter 1879; Miller 1929; Kopal 1948; Rosseland 1949; Vaughan 1972).
The fourth and fifth solutions were derived by Prasad (1948) and by Lamb (1932), respec-
tively, although Lamb’s solution has precedents that he acknowledges. A more useful form
of Lamb’s solution appeared in a paper by Gough, Ostriker & Stobie (1965). No additional
solutions in closed form are known. Van der Borght (1970), however, did try general series
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expansions that gave rise to two-term recurrence relations; Murphy & Smith (1970) tried,
also unsuccessfully, three-term recurrence relations.

Pulsational and secular stability has been studied analytically in the case of the homo-
geneous model, usually in the ‘one-zone’ approximation (Jeans 1927, 1929; Baker 1966).
In both Jeans’s and Baker’s investigations, the destabilization provided by variations of the
opacity and of the gas and radiation thermodynamics has been demonstrated very clearly.
Subatomic energy release has also been considered by Jeans, while turbulent convection has
been investigated by other authors (Cowling 1935; Unno & Kamijo 1966; Unno 1967;
Gough 1967). It fortunately turns out that the neglect of stratification in the stellar models
has no significant effect on the basic criteria for the overall stability of the star (Okamoto &
Unno 1967 ; see also Ledoux 1963).

In previous investigations, axial rotation and magnetic fields were ignored. Both forces
are of course non-radial in general, and are therefore difficult to handle analytically. In the
rotational case, however, if the angular velocity of rotation is much less than the fundamental
pulsational eigenfrequency, the star can, to a first approximation, be considered as spherically
symmetric and subject to mostly radial oscillations (Ledoux 1945). Furthermore, the change
of structure of the star due to rotation can be estimated by the ‘mean sphere’ approximation,
even though the change of shape of the star is ignored (Monaghan 1968). This approximation
is applicable to the case of either uniform or differential rotation. In giant variable stars like
classical Cepheids, rotation is undoubtedly rather slow throughout the pulsating layers
(Kraft 1966), and therefore the oscillations can be treated as being pseudo-radial. In the
magnetic case, the spherically symmetric approximation holds only (1) if the total magnetic
energy of the star is much less than its gravitational potential energy (Chandrasekhar & Fermi
1953) or (2) if the magnetic field is either well tangled or otherwise distributed axisymmetri-
cally so that (H2 =(1/3) (H?) (where angular brackets denote an average taken over a
spherical shell) (Trasco 1970). A tangled magnetic field is not an unreasonable assumption
for the outer, pulsating layers of giant stars like classical Cepheids. Such a magnetic field
could have arisen from dynamo action in the convective envelope during the red-giant phase
that immediately preceded the Cepheid phase, or else in the central convective core during
the still earlier main-sequence phase or even during the present Cepheid phase itself, the
magnetic flux tubes being continually buoyed up to the surface (Parker 1955; Jensen 1955).
Alternatively, a primordial magnetic field could have been built up, intensified by flux
conservation, and twisted by convection and rotation during the pre-main-sequence collapse
phase. Certainly it now appears that a fairly complex field geometry is needed for the
stabilization of even a very strong magnetic field within a star (Tayler 1974). Although the
magnetic field in the main pulsating layers of a Cepheid is likely to be small-scale, weak,
and dissipative, some field may always be present because of continual replenishment of
the magnetic flux from deeper layers. At least the observed magnetic fields in a few Cepheids
are significant enough to be astrophysically interesting (Borra 1981). Thus, rotation and
magnetic fields may turn out to contribute, in part, to the solution of the well-known
problem of the Cepheid mass discrepancy (Carson & Stothers 1976; Stothers 1979b).

The present paper addresses the question of how the adiabatic period spectrum and
the non-adiabatic stability criteria for analytic models of variable stars undergoing small,
spherically symmetric oscillations are affected by the inclusion of axial rotation and magnetic
fields in the approximations discussed above. Although these approximations are mathe-
matically necessary in order to obtain completely analytic solutions, they are not excessively
restrictive in many applications of astrophysical interest, such as the case of the Cepheid
variables, and some insight into the behaviour of real stars is expected to be obtained. It
must be pointed out, however, that any assumptions about the rotational and magnetic

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981MNRAS.197..351S&amp;db_key=AST

FTI81IMNRAS, I97- 351350

Radial pulsation equation 353

fields that are radically different from those made here may lead to very different results.
In the particular case of the stellar atmosphere model, the present assumptions must always
break down, and results for this model can have only rough heuristic value.

2 Periods
2.1 THE PREVIOUSLY KNOWN ANALYTIC SOLUTIONS

Eddington’s (1918, 1926) form of the radial adiabatic wave equation, neglecting rotation
and magnetic fields, can be written

d? 4—-V\d o’p Ta

22 e
dr? r Jdr \yP r?

with

daP GM(r)p

. @)
r r

a=Gy =D, 3)

n=6rfr, V=—dInPl/dInr, and o =2n/Il, where Il is the period. It is assumed that v, the
ratio of specific heats of the gas, is a constant.
Pulsational eigenfrequencies for the five models with known analytic solutions follow.

Homogeneous model (Sterne 1937):

o} =GMRy[j(2j+5)+a]  j=0,1,2,.... 4)

Inverse-square model (Sterne 1937):

o} =GMR™(y/2)2j +q)(2j+q+3)  j=0,1,2,... (52)
with

g=1101+8a)"2—1]. (5b)
Roche model (Sterne 1937):

o?=GMR>(¥/3)(3j+q) Bj+q+3)  j=0,1,2,... (63)
with

a=Go"”. (6b)
Prasad model (Prasad 1948):

o} =GMR™([3) [G/ +a) Bi+q+5)+2]  j=0,1,2,... (7a)
with

g=(1+a)!2—1. (7b)

The four models so far listed may be conveniently arranged in order of their interior
density distributions, which might, on general grounds, be expected to govern their pulsa-
tional characteristics. Since p./{p) is infinite for the last three models discussed, a better
indicator of the models’ central condensation is (p)/pg or, as Singh (1968) pointed out in the
case of composite polytropes, the total moment of inertia about the centre, I = [r2dM(r).

12
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Table 1. Pulsational characteristics as a function of central condensation,

Model pclip) (o) pR I/MR* w) I, /1, I, /M,

(v=5/3) (r=5/3) (v=5/3)

Homogeneous 1 1 3/5 1.00 0.281 0.180
Prasad o0 3/2 2/5 1.44 0.303 0.190
Inverse square oo 3 1/3 2.17 0.411 0.268
Roche oo o0 0 3.24 0.427 0.277

The pulsational characteristics for v =5/3 are given in Table 1, where wf=0} R*IGM. It
is a strange mathematical accident that the general relation between w3 and 7 can be repre-
sented as v = (4 + w§)?/(12 + kwj) with k=3, 4, 5, and 6 for the homogeneous, Prasad,
inverse-square, and Roche models, respectively.

Atmospheric model (Lamb 1932; Gough et al. 1965): the pulsational eigenfrequencies
are given by

of = GMR™ (y4)j3(n + (1 =5 j=0,1,2, .. ®)

where 7 is the polytropic index of the atmosphere, x, is the radius fraction of the atmos-
phere’s inner boundary, and j, represents a zero of the Bessel function J,. Equation 8)
follows as a solution of equation (1) if use is made of the fact that, in an atmosphere,
1 < ¥V < (0°pR?/ayP). This model and its variants are discussed in an astrophysical context
by Ledoux & Walraven (1958) as well as by Gough et al. (1965).

2.2 SOLUTIONS INCLUDING AXIAL ROTATION

Axial rotation will be included in the models by making three simplifying assumptions,
namely, (1) that spherical symmetry is formally preserved; (2) that the oscillations remain
purely radial; and (3) that each mass shell conserves its angular momentum during the
oscillations. The necessary dynamical equations, in which all forces are averaged over a
spherical shell, have been derived elsewhere (Stothers 1974). They are here combined into
one equation analogous to the Eddington equation:

d*n (4—V\dn [o*p V 1 A

— + )——+ — ——=lat——}|n=0 ©)
dr? r /dr LyP r? y1—2X

with

dpP GM(r

E__MOe (10)
dr r?

where \ = (2/3)Q%r® /[GM(r) and £ is the angular velocity of rotation.

Notice that if X is a constant (i.e. the mean ratio of centrifugal force to gravity is the
same at every layer), then equation (9) has the same form as equation (1). It follows that
the corresponding eigenfrequencies of pulsation for the five stellar models discussed above
are still represented by equations (4)—(8), but with the following substitutions:

a—>a+\y)(1 =21, (11)

G->G(l—N). (12)
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The influence of rotation on the models is thus manifested both through the alteration of
the equilibrium structure (via the change in G) and through the direct interaction with the
oscillations (via the change in «). It has not been possible to find other distributions of A
that would admit solutions in closed form.

In the case of the homogeneous model, a constant value of A implies a constant value
of Q. Simon (1969, 1970) has previously considered the uniformly rotating homogeneous
model, and has included the rotational distortion of the star. It is interesting to find that the
pulsational eigenfrequencies in these two different studies agree exactly. Ledoux’s (1945)
and Cowling & Newing’s (1949) even earlier studies provided an approximate expression
for the fundamental pulsational eigenfrequency of any slowly rotating star; in the case of
the homogeneous model, their approximate expression becomes exact and equal to ours.

For the more centrally condensed models, our results are entirely new. A curious feature
of w} arises in all the stellar models: w3 is found to be an increasing function of A for
v < 7. and a decreasing function of A for y > v,. Since the function generally exhibits some
curvature, our remark strictly applies only at small A. The explanation of this strange feature
is that the direct interaction of rotation with the oscillations always increases w3, while the
change in equilibrium structure of the star always lowers it; when y = v,, the two opposing
effects balance. We find that, in general, a quadratic equation exists for 7., whose relevant
root is y.=5/3, 1.6561, 1.6153 and 1.5450 for the homogeneous, Prasad, inverse-square
and Roche models, respectively. A similar feature has been reported for models of uniformly
rotating polytropes (Chandrasekhar & Lebovitz 1968; see also Clement 1965), but our
explanation of the feature, being based on easily separable analytic factors, seems more
rigorous. In all cases, v, decreases with increasing central condensation of the star, and obeys
nearly the same functional dependence on w?3.

Fig. 1 shows the quantities w3, I, /Iy, and TI,/II, for the Roche model compared with
those for the homogeneous model. Unless 7 is close to 4/3, the plotted quantities display
surprisingly little sensitivity to the assumed rate of rotation. Based as they are on a wide
range of angular momenta, these results for the Roche model (which should be representative
of real, centrally condensed stars) can readily explain the similar near constancy of pulsation
period derived for detailed models of rotating classical Cepheids (Carson & Stothers 1976;
Cox et al. 1977; Deupree 1978). The new results also lead to a prediction that rotation
should markedly decrease the fundamental pulsation period of rotating variable stars with
v close to 4/3 (e.g. red giants and massive white dwarfs).

2.3 SOLUTIONS INCLUDING MAGNETIC FIELDS

In analogy with the preceding treatment of rotation, magnetic fields will be introduced into
the models under the simplifying assumptions that spherical symmetry is preserved, that
the oscillations are radial, and that magnetic flux is conserved locally during the course of
the oscillations. By using dynamical equations derived for the axisymmetric case where
(H?y=(1/3) (H?) (Stothers 1979a) and by assuming that the resulting pseudo-isotropic
pressure of the magnetic field, (H?)/24n, is proportional to the local gas pressure raised
to the ath power, it is readily shown that Eddington’s equation must be modified to read

d*n [4 V (1+4av/3y\]dn 1 6lp T

2 Pl v | e e[ vl A 03
dr roor \1+4v3y /ldr \1+4v/3y/\yP r?

with

dP GM(r)p( 1 )

dr r? 1+av (14)
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Figure 1. Pulsational quantities for three values of vy in rotating star models. The Roche model is indicated
by solid lines, the homogeneous model by dashed lines.

and v = (H?)/24nP. At the surface of the stellar model, the magnetic field is assumed to
vanish.

If v is taken to be constant (and hence the parameter a is unity), equation (13) has the
same form as equation (1). Consequently, the five standard analytic solutions apply also
to the present case, provided that the following replacements are made

a—afl +4v/3y)", (15)
GGl +v)?, (16)
0% > (1 +4v/3y)". Qa7

The change in G simply represents the alteration of the equilibrium structure of the model,
whereas the changes in a and ¢? reflect magnetic interactions with the oscillations. Note
that the oscillations are not Alfvénic in character, but are gravitationally controlled.

The task of obtaining analytic solutions for models with nonconstant v seems to be
much harder, except in one trivial case. If the mean magnetic field (&?)'/? is constant and
does not vanish at the stellar surface, the pulsational eigenfrequencies for the homogeneous
model turn out to be the same as in the non-magnetic case.

Some earlier analytic work can now be compared with our present results. For the
homogeneous model with constant v, Chandrasekhar & Limber’s (1954) approximate virial
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Figure 2. Pulsational quantities for two values of v in magnetic star models. The Roche model is indicated
by solid lines, the homogeneous model by dashed lines.

expression for the fundamental pulsational eigenfrequency of a magnetic star reduces to an
exact expression, and equals our result. In the case of a purely uniform magnetic field,
Ledoux & Simon’s (1957) approximate solution, derived by a perturbation method and
under the assumption that the magnetic field does not vanish at the stellar surface, is the
same as our related solution for the case of constant (H*)!/2. Those authors have considered,
in a similar way, the inverse-square model, and have obtained a result that bears a qualitative
resemblance to the one we have obtained on the basis of constant v.

Among the various analytic models with constant v, the Roche model] is the most repre-
sentative of real stars, because most stars have a very high central condensation. Fig. 2 shows
for the Roche model, in comparison with the homogeneous model, the quantities w3,
I1,/I,, and MI,/I,. In both cases these quantities decrease with increasing v, except when
v = 4/3, in which case they are all zero. Evidently the change in equilibrium structure, which
reduces w3, always outweighs the direct magnetic interaction with the oscillations, which
tends to increase w3. A similar decrease of w3 has been obtained for models of polytropes
containing mixed poloidal and toroidal magnetic fields (e.g. Trehan & Uberoi 1972; Sood &
Trehan 1975). But the present Roche model confirms in a more straightforward way the
published models of classical Cepheids possessing tangled magnetic fields (Stothers 1979b).
Other variable stars with complicated magnetic structures (e.g. stars containing convective
envelopes) can now also be expected to show the same qualitative dependence of their
pulsational periods on v.
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3 Stability

The one-zone model of a star (Jeans 1927, 1929; Baker 1966) can be used to discuss the
problem of stability in the linear approximation. More sophisticated approaches exist (e.g.
Ledoux 1963), but little would be gained by using them here. Dynamical stability has
already been treated rigorously, since the criterion for its existence is the same as the
condition that the fundamental pulsational eigenfrequency exceed zero. Pulsational stability
depends, in an accurate treatment, on the radial distribution of the amplitudes, which are
of course here available. But as long as one is going to resort to a distributed model of some
sort, the radial distribution of the thermodynamical and atomic coefficients should also
be included (e.g. Cox 1974), which would lead immediately to a problem of numerical
quadratures. Secular stability requires, in a precise investigation, generally unavailable
information about the detailed form of the perturbation to the star. Under the simplest
assumption of a homologous perturbation, the one-zone model itself gives an exact result
(Jeans 1927, 1929; Ledoux 1963). Generally speaking, this simple model has proven to be
the most successful ‘average’ model of a variable star (Okamoto & Unno 1967).

In the present approach, it will be both convenient and consistent to set the spatial
derivatives of perturbed quantities equal to zero, except of course for the spatial derivative
of the luminosity perturbation, which is the source of the required non-adiabatic effects.
Baker’s (1966) approximation for this derivative is

d (8L 2 (8L
it a8

dM(r) \ L AM\ L
where 6L is the mean value of the luminosity perturbation in the zone being considered
and AM is the mass of the zone. Neglecting nuclear energy sources and convection, and

introducing axial rotation and magnetic fields in the approximations of Section 2, we find
for the composite equation of motion

%3;? + KwA i:—t?: +w?B g;—z+Kw3Dn =0, (19)
where
P L (kT — 4)PP"
pr +ppC
_3YC—X(pr +pp ()32
b= pt +ppC
D= (kT —4) (Xpp —3Y) —kp(Xpy +3Z) — 4(Ypr + Zpp)
pt +ppC ,
2L I GM(r
=_PPTWZM; =1“22—1; W r3(); 20)
X=4-5)\ Y=1-A+Epp—u; =—%pru;
_dlnp olnp o0lnk olnk
o omply T amrly P ampl T omrly
202 4mt d(H
“somey YT ome) dM(r)( 24r ) '
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Assuming a time dependence of n in the form exp (st), we have from equation (19)
§3 + Kwds? +w?Bs + Kw’D =0. (21)

As Jeans originally showed, the criterion that all three roots have negative real parts, i.e.
that the star be stable, can be written

w?B >0 (dynamical stability) (22)
Kw3D > 0 (secular stability) (23)
Kw3(4B — D) > 0 (pulsational stability). (24)

Notice that w is a positive quantity. We shall assume that K too is positive, as it will be for
an ideal gas. Also, for an ideal gas, I, =7, pp =1, and py = —1. Finally, in terms of the
parameter v = (H?)/24nP, we have u = v/(1 +v) if v is constant in space.

3.1 ROTATIONAL CASE

Stability in this case exists under the conditions

3y —4+(5—3y)A>0 (dynamical) 25)
kr —4) (A —2N) +kp(4 —50) +4(1 —A)> 0 (secular) (26)
(kt —4)(1 —7v)—kpy—3%>0 (pulsational). (27)

Generally, rotation acts to stabilize the star dynamically. This result has been known for a
long time (e.g. Ledoux 1945). The condition for secular stability in the case of Kramers’s
opacity (kp=1, kT =—9/2) is A> 1/16, or in the case of electron-scattering opacity (kp =0,
k1 =0), A> 0. Even if nuclear energy sources are entirely absent a small amount of rotational
angular momentum can prohibit the slow gravitational contraction of a star. Apparently,
this interesting possibility has not yet emerged from studies of the evolution of rotating
protostars. Pulsational stability, on the other hand, turns out to be completely unaffected
by rotation. This simple result explains why the blue edge of the theoretical instability strip
for classical Cepheids has been found to be essentially independent of the assumed rate of
rotation (Carson & Stothers 1976). It further predicts that other classes of pulsating variable
stars should, in this respect, be insensitive to rotation.

3.2 MAGNETIC CASE

The stability conditions are now

3y —4>0 (dynamical) (28)
Kt +4kp >0 (secular) 29)
(kt—4)(1 —7y)—kpy—3>0 (pulsational). (30)

It is a remarkable fact that stellar magnetism (of the adopted type) has no influence on the
stability of a star. This appears to be a consequence as much of the assumption that magnetic
flux is conserved during the displacements as of the assumption that (H?2)=(1/3) (H?);
these two assumptions cause the magnetic field lines to behave like a gas with y =4/3, i.e.
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the displacements become homologous. Consequently, our results may be somewhat more
general than at first appears. However, we shall compare them here only with published
models based on similar assumptions. The only relevant models in this case refer to classical
Cepheids, whose pulsational instability has been found to be practically independent of the
assumed strength of the magnetic field (Stothers 1979b). It follows that similar results can
be expected for the pulsational instability of related classes of variable stars.

4 Conclusions

Eddington’s form of the wave equation for small-amplitude, radial, adiabatic stellar pulsations
has been generalized to include, in a simple way, the effects of axial rotation and of tangled
magnetic fields. Solutions in closed form are obtainable for four analytic stellar models (and
a stellar atmosphere model) if the ratio of mean centrifugal force to gravity, A, and the ratio
of mean magnetic pressure to gas pressure, v, are constant throughout the star. Under the
present assumptions, the central condensations of the models (all the models are well known
from earlier work) are unchanged by the presence of the rotational and magnetic forces.
However, equilibrium quantities possessing dimensions are of course affected in general. We
find that rotation produces exactly the same structural modifications in the models as does a
magnetic field if (1 —A)=(1 +»)"'. However, the relative importance of rotation and
magnetism in affecting the pulsational characteristics of the models depends sensitively on
the choices of iy and of the type of model.

Nevertheless, certain general conclusions can be drawn. If we consider the range
4/3 <y < 5/3 and if we make an exception of the fundamental eigenfrequency of the
rotating star models with v > 7., we find that rotation generally increases w3, II, /Il,, and
I1,/I1,, and that magnetism generally decreases these quantities. Pulsationally, rotation
and magnetism lead to the same kind of effects as those that accompany, respectively, an
increase and a decrease of central condensation (see Table 1). Again with the exception
mentioned above, and away from the neighbourhood of yv=4/3, both rotation and magnetism
have a proportionately larger influence on the pulsational characteristics of the models if the
models possess lower central condensations. In this connection, a lower central conden-
sation leads also to a larger value of .. Finally, if either y = 4/3 or v = oo, the fundamental
eigenfrequency of the non-rotating models becomes zero (as has long been known). These
completely analytic results accord with, and partly extend, the detailed numerical results
derived previously for certain types of rotating and magnetic polytropes, as well as for actual
models of classical Cepheids. They also lead to obviously similar predictions for related
classes of variable stars.

Stability has been considered in the case of the homogeneous stellar model by a general-
ization of the one-zone model of Jeans and Baker. Rotation is found to provide dynamical
and secular stability, but to have no effect on the pulsational stability. Magnetism turns out
not to affect any of the stability criteria. These results clarify the detailed results already
derived for classical Cepheid models, and lead to predictions concerning the stability of
rapidly rotating protostars and variable red giants. Since all our results have sprung from
rather simply understood stellar models covering a large range of central condensations,
rotational angular momenta, and magnetic energies, they are probably quite widely applicable
to more realistic cases in which our assumptions about the rotational and magnetic fields
remain approximately valid. However, it must be remembered that our results refer only to
radial perturbations and that more complicated displacements could lead to very different
results.
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